Graphical Presentations of Symmetric Monoidal Closed Theories
نویسندگان
چکیده
We define a notion of symmetric monoidal closed (smc) theory, consisting of a smc signature augmented with equations, and describe the classifying categories of such theories in terms of proof nets.
منابع مشابه
Graphical Presentations of Symmetric Monoidal
We define a notion of symmetric monoidal closed (smc) theory, consisting of a smc signature augmented with equations, and describe the classifying categories of such theories in terms of proof nets.
متن کاملThe symmetric monoidal closed category of cpo $M$-sets
In this paper, we show that the category of directed complete posets with bottom elements (cpos) endowed with an action of a monoid $M$ on them forms a monoidal category. It is also proved that this category is symmetric closed.
متن کاملTwo Cotensors in One: Presentations of Algebraic Theories for Local State and Fresh Names
Various situations in computer science call for categories that support both cartesian closed and monoidal closed structure. Such situations include (i) models of local state, where the monoidal product describes disjointness of memory, and (ii) treatment of fresh names, as required in models of the π-calculus. I propose a technique to embed the two closed structures into one single structure. ...
متن کاملRELATIVE SYMMETRIC MONOIDAL CLOSED CATEGORIES I: AUTOENRICHMENT AND CHANGE OF BASE Dedicated to G. M. Kelly on the occasion of the fiftieth anniversary of the La Jolla Conference on Categorical Algebra, 1965
Symmetric monoidal closed categories may be related to one another not only by the functors between them but also by enrichment of one in another, and it was known to G. M. Kelly in the 1960s that there is a very close connection between these phenomena. In this first part of a two-part series on this subject, we show that the assignment to each symmetric monoidal closed category V its associat...
متن کاملVariable Binding, Symmetric Monoidal Closed Theories, and Bigraphs
This paper investigates the use of symmetric monoidal closed (smc) structure for representing syntax with variable binding, in particular for languages with linear aspects. In this setting, one first specifies an smc theory T , which may express binding operations, in a way reminiscent from higher-order abstract syntax (hoas). This theory generates an smc category S(T ) whose morphisms are, in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0810.4420 شماره
صفحات -
تاریخ انتشار 2008